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1. Introduction

One of the important questions in quantum cosmology is to understand the spacetime

structure near big bang or big crunch, and how the curvature singularity can be resolved

by the quantum effect. String theory is a theory of quantum gravity and is believed to be

able to provide clues for this question. In fact, some efforts along this direction has been

made in the past few years, see [1 – 3] and the follow-ups. In these works, string theory

on time dependent supersymmetric backgrounds with null-like or space-like singularity

are considered, it is hoped that supersymmetry will diminish the divergence of physical

quantities due to the big-bang, however, it is on the contrary in the cases considered in [1 –

3]. Despite that, one would still hope that some other supersymmetric time dependent

background will help to tame the curvature singularity and to arrive the viable big bang

cosmology.
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The UV disaster near the curvature singularity is due to the divergent gravitational

coupling at this region. One may hope that some strong/weak S-duality will help to under-

stand the strong gravity behavior by studying its weakly coupled dual theory. Recently, a

null-like time dependent linear dilaton background preserving 1/2 supersymmetry is con-

sidered in [4], see also [5]. This background is geodesically incomplete, and can be served as

a toy model studying string theory near the big bang singularity. Moreover, the simplicity

of the background allows the formulation of the dual matrix theory, which is a (1 + 1)-d

supersymmetric Yang-Mills theory in a time-dependent world-sheet. The S-duality feature

of the string/M-theory correspondence makes the physics of the singularity under control.

The alternative well-known S-duality happens in the AdS/CFT correspondence [8, 9],

where the weak bulk Anti-de Sitter (AdS) gravity is dual to strongly coupled conformal

field theory. This correspondence is discovered by considering the near horizon limit of

the D3-branes, and other similar settings where the boundary theory is conformal. Later

on, it is generalized to so called domain-wall/QFT correspondence by considering the near

horizon limit of the general Dp-branes [11, 12]. In the domain-wall/QFT correspondence,

the bulk background is conformal AdS space, and the dialton profile is nontrivial, thus,

the boundary theory is no longer conformal. This provides an interesting setting for the

holographic RG running.

Based on the consideration of the S-duality in AdS/CFT (or domain-wall/QFT) cor-

respondence, we hope to generalize it to the supersymmetric time dependent background.

If the background is geodesically incomplete, then it provides a new setting to study the

physics of singularity in the context of holography. We will explore this new direction by

constructing the new supersymmetric time dependent solutions in the context of domain-

wall/QFT correspondence. We should mentioned that the similar idea in constructing the

null-like AdS solutions has also been independently pursued in [23 – 25].1

In this paper, we construct a new class of 1/4−BPS domain-wall solution with null-like

dilaton. Our solution is the generalization of the solution found in [12] in the context of

domain-wall/QFT correspondence, and it takes the following form in the dual frame (here

we omit some prefactors which will be recovered later on.):

ds2
dual = r−(p−5)a(u)2(−2dudv + h(u, r, ~x)du2 + d~x2

(p−1)) + r−2dr2 + dΩ2
(8−p)

eφ = r−(p−3)(p−7)/4b(u)

Fuv···pr = (7− p)r(6−p). (1.1)

Here φ is the dilaton, and Fp+2 is the Ramond-Ramond (RR) form flux sourced by Dp-

branes. The metrics between string and dual frames are related by gstring = e
2φ

7−p gdual.

The time dependent profiles a(u) and b(u) will be determined later on, and will be shown

to cause a caustic at finite proper time interval.

1While we were having difficulty in constructing the null-like AdS5 solution based on the ansatz of AdS

pp-wave [21], we received the draft [24] by email from P.M. Ho to inform us that they had found the

solution. After reading [24] we realized that we should turn on the time-dependence on dilaton, not on the

scalars in [21]. Then we decide to switch to find the null-like domain-wall solutions discussed in this paper.
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The metric in the dual frame takes the form of AdSp+2×S8−p, however, the boundary

of the AdS space is now a pp-wave background dressed by a time dependent Weyl factor.

This induces a boundary cosmology. Our solutions then provide a holographic dual for a

QFT living on p+ 1-dimensional cosmological background with a big bang-like singularity.

In fact, the time profile a(u) is the scale factor of the boundary cosmology and we will show

that it obeys Friedman-like equation. Our solutions are in some sense the supersymmetric

version of the braneworld [6] or the mirage cosmology [7] induced by the time-varying

bulk configurations. Furthermore, we use the test probes to derive the the effective gauge

coupling and the energy-distance relation. We find that both are time dependent. In

this way, our solutions also provide a model to study the quantum field theory with time

dependent coupling and UV cutoff.

It is then interesting to use the perspective of the domain-wall/QFT correspondence

to understand the QFT in a time-dependent background, especially its behavior near the

big bang. One way to examine this is to count the number of degrees of freedom of the dual

field theory near the big bang. In this paper we evaluate the holographic c-function for

p = 1 case, which characterizes the running behavior of the number of degrees of freedom of

the 2-dimensional dual field theory as the boundary universe evolves. Our result suggests

the possible resolution of big bang singularity.

This paper is organized as following: In the next section 2, we will solve the equations

for the ansatz (1.1) and determine the time dependent profiles a(u) and b(u). We then

show that the solution preserves 1/4 supersymmetry. In section 3, we will show that the

metric is geodescially incomplete, thus it admits a caustic which play the role of big bang

singularity. In section 4, we will discuss the time dependent coupling constant of the dual

quantum field theory from the point of view of domain-wall/QFT correspondence. In

section 5, we evaluate the holographic c function and found that it is frame-independent,

and runs in accordance with the c-theorem as the boundary universe evolves. We conclude

the paper in section 6 with some discussions. In appendix A, we briefly review the domain-

wall solutions and their KK reductions. In appendix B we give some details of the Killing

spinor equations. In appendix C, for completeness we reproduce the solution already found

in [24] for AdS5 × S5 case with null-like axi-dilaton field. In appendix D, we record the

new solutions for the AdS3 × S3 ×M4 with self-dual 3-form flux and null-like axi-dilaton.

The more general solutions can be obtained by applying S-duality to the solutions in

appendices C and D.

2. Domain-wall solutions in null-like dilaton background

We consider the ten-dimensional type II supergravity, and the action of the bosonic sector

in Einstein frame is

L = R− 1

2
(∂φ)2 − 1

2 · (p+ 2)!
eσφF 2

(p+2). (2.1)

The constant characterizing the coupling between dilaton and RR flux is given by σ =
3−p

2 .
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These fields can support soliton-like objects extended along (p+1) subspace, which are

further interpreted as a stack of N Dp-branes from the viewpoint of string theory. Domain-

wall solutions were obtained by taking near-horizon limit [12]. Only in the case of p = 3,

taking near-horizon limit explicitly gives us AdS5× S5 bulk geometry and supersymmetry

is enhanced from 1/2−BPS to maximum.2 The AdS/CFT correspondence conjectures

that the same physics can also be described in term of N = 4, SU(N) superconformal field

theory living on the boundary of AdS5. In the case of generic p 6= 3, the bulk is no longer

AdS geometry but domain-wall with warp factor supported by non-vanishing dilaton field.

The radius-dependent dilaton also breaks conformal symmetry on the boundary, while still

preserving 1/2−BPS without enhancement.

In this section we will generalize the domain-wall solution (p 6= 3) found in [12] to the

ansatz given in (1.1) by introducing the nontrivial time dependent profiles a(u) and b(u).

We will further show that the time-dependence breaks the supersymmetry to 1/4.

2.1 Solving the equations of motion

The metric in Einstein frame is related to the one in dual frame by geinstein = e
p−3

2(7−p)φgdual,

then from (1.1) our ansatz in the Einstein frame becomes

ds2
einstein = r(p−7)2/8a(u)2b(u)(p−3)/(2(7−p))(−2dudv + h(u, r, ~x)du2 + d~x2

(p−1))

+r(p−3)2/8b(u)(p−3)/(2(7−p))(r−2dr2 + dΩ2
(8−p)) (2.2)

and the dilaton and the form flux are the same as in (1.1). We will use the indices i, j, k for

the coordinates ~x in the flat metric d~x2
(p−1), and the indices m,n, l for the ones in dΩ2

(8−p).
The equation of motion reads:

RMN =
1

2
∂Mφ∂Nφ+

eσφ

2(p+ 1)!

(
FMK1···Kp+1F

K1···Kp+1

N − p+ 1

8(p+ 2)
gMNF

2
(p+2)

)
(2.3)

∇M (eσφFMN1···Np+1) = 0 (2.4)

∇2φ =
σ

2(p+ 2)!
eσφF 2

(p+2), (2.5)

where equations (2.4) and (2.5) are satisfied provided that

b(u) = (a(u))
(p+1)(p−7)

2(p−3) . (2.6)

It is then straightforward to calculate

F 2
(p+2) = −(p+ 2)!(7 − p)2r−(p−6)(p−3)2/8a(p+1)(p−6)/4

FMK1···Kp+1F
K1···Kp+1

N =
1

p+ 2
gMNF

2
(p+2)

√−geσφF uv···pr = p− 7 (2.7)

2This enhancement also happens while taking near-horizon limit of M2 and M5 branes in M-theory, due

to the lacking of dilaton field in the D = 11 supergravity.
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and (2.3) are solved by given Ricci tensors,

Ruv =
(7− p)3

16
r(5−p)a2 (2.8)

Ruu =
(p− 7)3

16
r(5−p)a2h+

p2 − 6p− 23

8
(∂u ln a)2 + 2∂2

u ln a− 1

2
~∇2h

+
1

2
r(5−p)a2[(p− 8)r∂rh− r2∂2

rh] (2.9)

Rij = −(7− p)3

16
r(5−p)a2δij (2.10)

Rrr =
(p+ 1)(p− 5)(7 − p)2

32
r−2 (2.11)

Rmn =
(p+ 1)(7 − p)2

16
g((8−p)−sphere)
mn (2.12)

where ~∇2 is the (p− 1)-dimensional Laplacian and g
((8−p)−sphere)
mn is the metric of the unit

(8− p)-sphere.

While others are trivially satisfied, only the uu-component of (2.3) gives nontrivial

constraint on functions a and h, that is,

2∂2
u ln a− 32

(p− 3)2
(∂u ln a)2 =

1

2
~∇2h− 1

2
r(5−p)a2[(p− 8)r∂rh− r2∂2

rh]. (2.13)

We should remind the reader, the above solutions are for p 6= 3 cases. For p = 3, we

need to impose the self-dual condition on the 5-form flux. The solution has been found

in [24], for completeness we include it in the appendix C, and the analogue of (2.13) is

given in (C.10).

2.2 Supersymmetry analysis

To check how much supersymmetry preserved by the solution found above, we should look

into the Killing spinor equations [15]

δΨM = ∂M ε−
1

4
ωM

abγabε+
(−)p

8(p+ 2)!
eφF · γγMε′ = 0 (2.14)

δλ = γM∂Mφε+
3− p

4(p+ 2)!
eφF · γε′ = 0 (2.15)

where ΨM and λ are gravitino and dilatino respectively. These are the Killing spinor

equations in the string frame. To examine these equations, we need to transform the metric

in (1.1) into string frame and derive the corresponding spin connections. The details are

given in the appendix B.

Following the metric ansatz in the string frame (B.1), the variation of dilatino (2.15)

reads

δλ = γu∂uφε+ γr∂rφ+
3− p

4(p+ 2)!
eφF · γε′

=
∂ub

b
γuε+

−1

4r
(p− 3)(p− 7)γr(ε+ (−)pγ̄+−···pε′) = 0. (2.16)
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Here we have used constraint (2.6) obtained from solving equations of motion. This Killing

equation vanishes if two projections are imposed on an arbitrary constant spinor,

γuε0 = 0, ε0 + (−)pγ̄+−···pε′0 = 0 (2.17)

Given the spin connections in (B.3), variation of gravitino (2.14) is given by

δΨ+ = ∂+ε−
1

4
rαa−δ∂rhγ̄+rε− 1

4
r−αa−β∂ihγ̄+iε

− 1

2
αrα−1a−δγ̄−r(ε+ (−)pγ̄+−···pε′) (2.18)

δΨ− = ∂−ε−
1

2
αrα−1a−δγ̄+r − βr−αa−β−1∂ua(γ̄+)2

+
1

2
(−)pαrα−1aδγ̄+−···prγ̄−ε′ (2.19)

δΨi = ∂iε− βr−αa−β−1∂uaγ̄
i+ε− 1

2
αrα−1a−δγ̄ir(ε+ (−)pγ̄+−···pε′) (2.20)

δΨr = ∂rε− δr−αa−β−1∂uaγ̄
r+ε+

1

2
(−)pαrα−1a−δγ̄+−···pε′ (2.21)

δΨm = ∂mε− δr−αa−β−1∂uaγ̄
m+ε− 1

2
αrα−1a−δγ̄mr(ε+ (−)pγ̄+−···pε′)

+
1

2
(2α− 1)rα−1a−δγ̄mrε, (2.22)

where α = 7−p
4 , β = p−7

2(p−3) , δ = − p+1
2(p−3) . Equations (2.18),(2.19) and (2.20) are solved by

imposing same projections as in transformation of dilatino, the remaining (2.21) and (2.22)

are solved by additionally letting Killing spinors have coordinates dependence, that is

ε = e
1
2
rαa−δe

1
2

(1−2α)rα−1a−δ γ̄mrΩmε0 (2.23)

Thus, we conclude our solutions preserve 1/4 supersymmetry.

3. Boundary cosmologies and geodesic incompleteness

In this section we will discuss some properties of the solutions found above. Especially,

we will make the dynamics of the boundary cosmology explicit by solving the scale factor

a(u).

A related issue is about the choice of the frames when we discuss the boundary cos-

mology. Although we solve the field equations in the Einstein frame, it would be more

natural to discuss the holographic boundary cosmology in the dual frame since the bulk

metric is AdSp+2 × S8−p and the usual arguments for AdS/CFT correspondence can be

generalized easily [12]. Moreover, one can KK reduce the 10-dimensional supergravity to

(p + 2)-dimensional one because there is no warped factor in front of the S 8−p metric. In

the following, we will stick to the dual frame metric when we discuss the dynamics of the

boundary cosmology.
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3.1 Boundary cosmologies

We are now ready to solve (2.13) for the scale factor a(u) and the pp-wave-front profile

h(u, r, ~x) of the boundary cosmology.

Since the L.H.S. of (2.13) is function of u only, we can solve the function h by

h(u, r, ~x) =
2P (u)

(p− 5)
r(p−5) + h0(u, ~x)r(p−7) + h1(u, ~x) (3.1)

with
~∇2h0(u, ~x) = 0, ~∇2h1(u, ~x) = 4Q(u) (3.2)

and P (u) and Q(u) are arbitrary functions of u.

Plugging this into (2.13), we get the equation for a(u) as following

∂2
u ln a− κ(∂u ln a)2 = Q(u) + P (u)a2. (3.3)

where κ ≡ 16/(p − 3)2.

On the other hand, we can make the dynamics of the boundary cosmology more explicit

by rewriting (3.3) into the form of the Friedman equation. To do this we first introduce

the time coordinate t which is related to the conformal time u by

dt ≡ a(u)du, (3.4)

The equation (3.3) can be put into the form of Friedman equation

ä

a
− κH2 =

Q(u)

a2
+ P (u) (3.5)

where the dot denotes the derivative with respect to t, and the Hubble parameter is de-

fined as

H =
ȧ

a
. (3.6)

Since (3.3) is a nonlinear differential equation, it is hard to solve the general solution

for generic P (u) and Q(u), however, once these functions are given, one can solve the scale

factor to yield various kind of cosmologies. In the following, we will solve the scale factor

in some simple cases:

(i) The simplest case is to set P = Q = 0, then the solution is

a(u) = (c0 + c1u)
−1
κ (3.7)

where c0,1 are arbitrary constants. Obviously the scale factor a(u) is singular if c0+c1u = 0.

(ii) The next case is P = 0 but Q is a constant, then the solution is

a2(u) = c0 cos
(√

κQu
)

+ c1 sin
(√

κQu
)
, Q > 0, (3.8)

or

a2(u) = c0 exp
(√

κ|Q|u
)

+ c1 exp
(
−
√
κ|Q|u

)
, Q < 0. (3.9)
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The Q > 0 case is the type of closed universes, and the Q < 0 case is the type of open

universes. From (i) and (ii), it seems that Q plays the similar role of the spatial curvature

constant.

(iii) The last case is Q = 0 but P is a constant, and the solution is

±u+ c1 =

∫ F=a−κ dy√
c0 − κ2P

κ−1y
2− 2

κ

. (3.10)

The solution will be some hypergeometric function.

Finally, we would like to mention that (3.5) is different from the Friedman equa-

tion derived from the Einstein gravity based on the null-like boundary metric: ds2 =

a2(−2dudv + h(u)du2 + dx2
p−1). For such a metric, only the uu-component of the Einstein

tensor is nonzero, and the Einstein gravity yields the following Friedman equation

ä

a
− 2H2 =

8πGN
p− 1

ρm +
2− p

2
h. (3.11)

Here ρm is matter’s energy density.

In our case, the Friedman-like equation (3.5) should be the one derived from the

effective gravity on the boundary induced by the bulk geometry, which may not be the

Einstein gravity due to the nontrivial counter terms [19]. Moreover, from the dual theory

point of view, these counter terms come from the dual QFT’s contributions. It will be

interesting to understanding the origin of the functions P (u) and Q(u) from the dual QFT.

3.2 Geodesic incompleteness

Our solutions are the vacuum solutions of type II supergravity, so the curvature invariants

will be constant finite value determined by the strength of the RR-flux as for the Freund-

Rubin cases. However, for some cases the scale factor solved in last subsection is singular

as the conformal time u approaches some finite value. We will see that the singularity leads

to some caustic which terminates the geodesics. This shows that our solutions contain the

null-like big bang singularity.

It is easy to see that the uu-component of the Ricci tensor, i.e., (2.9) is also singular

if the scale factor is singular. This will lead to the caustics by the Raychaudhuri equation

[20]
dθ

ds
= −RMNV

MV N + (VM
;NV

N );M (3.12)

where V = V u∂u is the unit velocity vector field for a congruence of the null-like curves,

and θ is the expansion parameter of the volume enclosed by the congruence. Therefore, as

Ruu becomes singular, the expansion parameter will shrink to zero at finite value of the

affine parameter s and cause the caustics.

Moreover, we would like to make a connection between the affine parameter s and the

conformal time coordinate u, and see if the caustics happen at finite s or not. In fact,

we are just generalizing the treatment in [4] straightforwardly to our case, see also [5, 24].

This is done by the geodesic equation

d2u

ds2
+ Γuuu

(
du

ds

)2

= 0 (3.13)

– 8 –
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where

Γuuu = 2∂u ln a (3.14)

for both the bulk and boundary metrics. From the geodesic equation it is easy to see that

du

ds
=

1

a2
≥ 0. (3.15)

This shows that s is a monotonic function of u, and implies that the geodesics terminate

at finite value of s if the singularity of the scale factor occurs at finite value of u.

Finally, we would like to mention, not all of the solutions contain caustics. For example,

for the case (ii) with Q < 0, c0 > 0 and c1 ≥ 0 in the previous subsection, the scale factor

never shrinks to zero at finite u.

4. Probing the dual quantum field theory

In this section we would like to study the dual quantum field theory from the point of view

of test probes. As pointed out in [13], there are two different probes: the closed string one

and the open string one.3 They have different energy-distance relations [10] which relates

the the UV cutoff of dual field theory to the supergravity radial coordinate. Our setting

generalizes the ones studied in [11 – 13] by having an additional dynamical scale, which is

the boundary Hubble scale.

Since the dual quantum field theory is a p+ 1-dimensional SU(N) Yang-Mills theory,

from the dimensional analysis, the effective dimensionless gauge coupling is related to the

dimensionful Yang-Mills coupling by by

g2
eff ∼ g2

YMNE
p−3 (4.1)

where gYM is the UV bare Yang-Mills coupling and E is the UV cut-off for the dual field

theory. As will be shown that gYM and E are time dependent. Then we want to express

the above relation in terms of supergravity variables for either closed string or open string

probes, especially to determine probes’ energy-distance relations.

To carry this out, we render our metric ansatz (1.1) in the dual frame with proper

prefactors:

ds2
dual = α′

[
(ḡ2
Y MN)−1r5−pa(u)2ds2

(p+1) + r−2dr2 + dΩ2
(8−p)

]
(4.2)

eφ =
1

N

[
(ḡ2
Y MN)rp−3

](7−p)/4
b(u) (4.3)

where ḡ2
YM := gs(α

′)(p−3)/2 with gs being defined in (A.2) is the UV bare Yang-Mills

coupling in the static domain-wall/QFT correspondence. The string frame metric is Weyl-

related by gst = (Neφ)2/(7−p)gdual.

3In [13], the closed string probe is named as holographic/supergravity probe, and the open string one

as the Dp-brane probe.
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The simplest closed string probe is the dilaton which couples to the boundary gauge

invariant operator in string frame as following e−φ
√−gF 2. This implies that the dimen-

sionless effective gauge coupling for closed string probe in string frame is

g2
eff ∼ Neφ = [g2

Y MNr
p−3]

7−p
4 (4.4)

where we define the time dependent UV bare Yang-Mills coupling in the above and in

(4.1) by

gYM := ḡYM (b(u))2/(7−p). (4.5)

This is also true for p = 3 case; for p 6= 3 we can further use (2.6) to convert b(u) into a(u).

We can read off the UV cutoff E by comparing (4.1) and (4.4), and the result is

E ∼ (Neφ)1/(7−p) r(5−p)/2

gYMN1/2
(4.6)

This is the energy-distance relation for the closed string probe in string frame. Remarkably,

this energy scale is nothing but
√
gtt/α′/a(u) in string frame except that we should replace

ḡYM by gYM . Note that a(u) is the scale factor of the boundary cosmology4 governed by

(3.5).

On the other hand, the energy-distance relation for the open string probe in string

frame is

E ∼ r. (4.7)

This is obtained by considering a string stretched from the origin to a test brane such

that the energy is proportional to its length. Note that when evaluating E, the nontrivial

warped factor in
√
grr is cancelled out by the one in

√
gtt in string frame [12, 13]. Then

from (4.1), (4.5) and (4.7) we obtain the effective gauge coupling for the open string probe

g2
eff ∼ g2

YMNr
p−3. (4.8)

We can transform the gauge invariant operator
√−gF 2 in string frame to the one in

dual frame and absorb the Weyl factor into effective gauge coupling. In this way we can

obtain the effective gauge coupling and energy-distance relations measured in dual frame.

The results are

g2
eff ∼ [g2

YMNr
p−3](5−p)/2 (4.9)

and

E ∼ r(5−p)/2

gYMN1/2
(4.10)

for both the closed and open string probes.5 Note that the energy-distance relation (4.10)

can be either understood as the energy of a string with length r, namely, E ∼ √grrgttr ∼
(Neφ)2/(p−7)r, or as

√
gtt/α′/a(u) but with ḡYM replaced by gYM .

Few remarks are in order for our above result.

4The replacement of ḡYM by gYM may suggest that the warped factor involved ḡ2
YMN in (4.2) should be

replaced by g2
YMN . If so, then the scale factor a(u) of the boundary metric will be changed to (a(u))4/(3−p).

For p < 3, the qualitative behavior of boundary cosmology does not change.
5The relations (4.9) and (4.10) are the generalization of the ones for the closed string probe in [13] with

ḡYM replaced by gYM .
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• Although we can obtain effective gauge coupling and energy-distance relation in dif-

ferent frame by Weyl transformation induced by some power of (Neφ), it is more

natural to work in the dual frame since its radial metric is time independent, how-

ever, the time dependence of the Weyl factor will dress the radial metric in the other

frames.

Moreover, the effective gauge coupling in the dual frame is the same for both closed

and open string probes as in the p = 3 cases.

• The dynamical quantities gYM , geff and E are all time dependent. Especially, at

the big bang the couplings are vanishing and E is divergent for p < 3 cases if r is

fixed. Therefore, the p < 3 dual field theory is valid effectively near the big bang

with vanishing coupling.

• For the boundary effective field theory description to be valid, we should require

E > H (4.11)

where H := ȧ/a is the Hubble scale derived from the boundary cosmology, which

plays the role of a dynamical energy scale for the dual field theory.

This is the additional constraint besides the usual ones in the static domain-wall/QFT

correspondence, namely, (i) g2
eff ¿ 1 for the validity of the perturbation of the dual

field theory and (ii) small curvature (g2
eff À 1) and small dilaton (eφ ¿ 1) for the

validity of classical supergravity theory. Note that these conditions are now time

dependent. Especially, at big bang, supergravity is invalid because of small effective

coupling (large curvature) but the dual description is of no problem for p < 3 cases.

5. Cosmic c functions from holography

An interesting question for the big bang cosmology is the evolution of the number of degrees

of freedom, especially, we would like to know the amount of degrees of freedom near the

bang bang singularity. Intuitively this is related to the issue of resolving the space-like

singularity. For example, in the conifold transition [16], the singularity is resolved with the

emergence of light degrees of freedom by wrapping the tensionless D-brane.

For a conformal field theory, the number of degrees of freedom is characterized by

the central charge which can be extracted from the coefficient of Weyl anomaly. For non-

conformal field theory, the central charge is no longer constant, which is instead called the

c function and will run with the energy scale. Moreover, a c-theorem for 2-diemsnional

field theory is proved in [14] that the c function will never increase in a RG flow. However,

for higher dimensional cases, there is no rigorous proof of c-theorem as far as we know.

In this section we would like to evaluate the c function of the dual field theory from

the bulk gravity for our null-like cosmological background. Usually one can extract the c

function from the Weyl anomaly which exists only in even dimensional space-time. For

simplicity, we consider the p = 1 case which yields a 2-dimensional field theory living on

a time-dependent background. It turns out the c function is time dependent and runs

– 11 –
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in a manner in accordance with c-theorem as the universe evolves, thus the cosmological

evolution induces the RG flow for the dual field theory. Moreover, it leads to a fact that

the number of degrees of freedom is divergent when approaching the big bang, and suggests

the possible resolution of the big bang singularity.

It is also interesting to evaluate the c function for p = 5 and examine the singularity

issue, however, in this case the effective gauge coupling diverges and the UV cutoff is

vanishing so that the validity of the dual field theory is in question.

Before starting the calculations, we would like to comment on the holographic c func-

tion for the solutions recorded in appendix C and D. In these cases, either the dilaton is

a constant or it does not couple to the form-flux, therefore there is no non-trivial scalar

potential so that the c function runs with neither r nor u, i.e. these are still central charges.

5.1 Holographic c function

The canonical method in evaluating the RG flow from holography was developed in [17]

by applying the Hamilton-Jacobi formulation of the bulk gravity to construct the counter

terms of the bulk gravity action. In this formalism the Hamilton-Jacobi functional is inter-

preted as the quantum effective action of the dual field theory resulting from integrating out

the matter degrees of freedom coupled to the boundary gravitational background. More-

over, though the field equations of bulk gravity is of second order, the evolution equation of

the quantum effective action derived from the Hamilton-Jacobi formalism, is of first order

and takes the form of the Callan-Symanzik equation. This is the RG equation for the dual

field theory derived from holography.

For concreteness we focus on p = 1 case, and we decompose the metric into

ds2 = dρ2 + γµν(ρ, xµ)dxµdxν , (5.1)

where ρ is the radial coordinate, and γµν is the metric for the 2-dimensional transverse

hypersurface with coordinates xµ = u, v.

The bulk gravity action can be obtained from (A.15) by setting p = 1 and φ = ln Φ,

and it is

Sbulk =

∫
d3x
√−g

(
R+

1

2
G(Φ)(∂Φ)2 + V (Φ)

)
:=

∫
d3x
√−gL (5.2)

with

G(Φ) = −16

9
Φ−2, V (Φ) =

1

2
Φ

4
3 . (5.3)

Moreover, its field equations can be solved by the null-like p = 1 domain-wall solution

ds2
3 = Φ−4/3[r4a(u)2(−2dudv + h(u, r)du2) + r−2dr2] (5.4)

Φ = r−3a(u)3 (5.5)

where the functions a(u) and h(u, r) are given in section 3.

Following the usual ADM formalism with respect to the metric ansatz (5.1), one can

get the super-hamiltonian constraint as following

H := π2 − πµνπµν +
1

2G
Π2 −L = 0 (5.6)

– 12 –
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where πµν and Φ are the canonical ADM momenta for the metric γµν and the scalar Φ

respectively, and π = γµνπµν . From their defining equations, one can obtain the following

“flow equations”

γ′µν = 2(πµν − γµνπ), Φ′ = G−1Π (5.7)

where the prime ′ denotes the derivative with respect to ρ.

In the Hamilton-Jocobi theory, the canonical ADM momenta are related to the Hamil-

ton-Jacobi functional S as following

πµν =
1√−γ

δS

δγµν
, Π =

1√−γ
δS

δΦ
. (5.8)

On the other hand, in the formalism of [17] the Hamilton-Jacobi functional is interpreted

as the quantum effective action of the dual field theory, which usually contains the local

renormalized part and the non-local part as following

S =

∫
dx2√−γ

(
Z(Φ)R+

1

2
M(Φ)(∂Φ)2 + U(Φ)

)
+ Γ[γµν ,Φ, ∂

−1
µ ]. (5.9)

Note that the vacuum expectation values of the boundary stress tensor and the boundary

gauge-invariant operator OΦ to which Φ couples are

〈Tµν〉 :=
1√−γ

δΓ

δγµν
, 〈OΦ〉 :=

1√−γ
δΓ

δΦ
(5.10)

and the Weyl’s anomaly is given by

γµν〈Tµν〉 := 〈T 〉 = − c

12
R+

β

2
〈OΦ〉 (5.11)

where c is the c function charactering the number of effective degrees of freedom, and β is

the beta function charactering the RG running of Φ.

Now we use (5.9) to evaluate the canonical momenta given in (5.8), and then plug

the results into the super-hamiltonian constraint to get the Hamilton-Jacobi equations.

Collecting terms in the Hamilton-Jacobi equations we have the following results:

1. Putting the potential terms together gives

U2 +G−1U ′2 = 2V (5.12)

which can be solved for the boundary scalar potential

U(Φ) =
2√
3

Φ2/3. (5.13)

2. Comparing scalar’s kinetic terms (∂Φ)2 and ∂2Φ has

UZ ′′ +G−1M ′U ′ +G = 0, UZ ′ +G−1MU ′ = 0 (5.14)

which can be solved by

M =
64

9
√

3
Φ−8/3, Z ′ =

8

3
√

3
Φ−5/3. (5.15)
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3. Finally, collecting the linear curvature term(including the Weyl’s anomaly term) ar-

rives

〈T 〉 = U−1(G−1Z ′U ′ − 1)R + U−1G−1U ′〈OΦ〉 (5.16)

= −5Φ−2/3

2
√

3
R− 3

8
Φ〈OΦ〉. (5.17)

In the second equality we have used the solution for U and Z ′. From (5.16), (5.11)

and (5.5) we can read off the c and β functions for the null-like background (5.5) and

the result is6

c(u, r) = 10
√

3

(
r

a(u)

)2

, β(u, r) = −3

4

(
a(u)

r

)3

. (5.18)

This suggests that the c function also runs as the boundary universe evolves, and the

inverse scale factor plays the role of energy scale so that the c function blows up while

approaching the big bang, i.e. as in the UV limit. This is consistent with c-theorem

as expected since the dual field theory is asymptotically free as seen from negative β

function or as discussed in section 4, where the coupling constant is time dependent

and becomes weakly coupled as a(u) decreases.

The behavior of the c function is quite different from the one in the dS/CFT corre-

spondence [22]. In dS/CFT the RG flow is the inverse of the cosmological flow so that the

c-theorem holds, and we also have the cosmological horizon to justify the choice. In our

case, we do not have the cosmological horizon, and the c-theorem is the only check.

5.2 Frame (in)dependence

In the above we have calculated the c function in the Einstein frame, it is natural to ask

what is the c function calculated in the dual frame which has a simpler metric but with

a more complicated bulk gravity action. In [18] it was argued by explicit example that

the c and β functions transform as the vectors on the Φ-space. That is, if two frames are

related by

ds̃2 = Φ2ξ
(
dρ2 + s(ρ)2γ̂µν(xµ)dxµdxν

)
:= Φ2ξdρ2 + s̃2(ρ)γ̂µν(xµ)dxµdxν , (5.19)

then the “vectors” on Φ-space transform as

β̃ := s̃
dΦ

ds̃
= Ω s

dΦ

ds
:= Ωβ, c̃ = Ω c (5.20)

so that the transformation function is defined by

Ω−1 :=
s

s̃

ds̃

ds
= 1 + ξΦ−1β. (5.21)

In the case of relating dual frame to Einstein frame as given by (A.16), we have ξ = 2/3,

i.e. ξ = 2(p− 3)/(p(p− 7)) for p = 1, and β = −3Φ/4 as given above so that Ω = 2. This

shows that the β and c functions in the dual frame are just twice as large as the ones in

the Einstein frame.

6The β function solved here is the same as the one obtained by solving the flow equations (5.7) in the

potential dominant limit [17].
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6. Discussions and conclusions

In this paper, we construct a whole class of the quarter BPS null-like domain-wall solu-

tions generalizing the domain-wall/QFT correspondence to the cosmological context. All

the solutions we found are geodesic incomplete, moreover, the boundary metrics are time

dependent and obey the Friedman-like equation. It is interesting to explore more on the

possible behaviors of these toy cosmologies.

To exploit the power of domain-wall/QFT correspondence, we first show that the

coupling constant of the dual field theory is time dependent, and discuss the validity of

each effective theory in different regimes. Moreover, we calculate the holographic c function

for some of these new solutions corresponding to asymptotically free QFT. We find that the

c function is also time dependent and runs in agreement with c-theorem as the universe

evolves. We did not check the c-theorem for all the solutions, especially for those non-

asymptotically free ones. It will be interesting to investigate in the future.

From the c function, we know that the number of degrees of freedom is huge near the

big bang either for the null-like AdS5×S5 case with finite constant central charge or for our

p = 1 solution with divergent c function. This may suggest that the big bang singularity

could be resolved. However, one needs a more direct way to study this issue by exploiting

the S-duality in the usual AdS/CFT correspondence. It will be interesting to evaluate the

correlation functions of the dual field theory by the way of bulk-to-boundary propagators

[9], and see if they can tell us some new physics about the resolution of the singularity or

not. This was in fact the concern of the original matrix big bang proposal [4].

We hope that our new solutions will provide a new playground for studying the strongly

coupled QFT in the cosmological background with time dependent coupling constants. We

also hope that the holographic principle will help us in understanding the issues such as

the resolution of space-like singularity.
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A. Domain-wall solutions and dimensional reductions

In this section, we briefly review the Dp-brane solution and its near-horizon domain-wall ge-

ometry, while introducing the transformation between the Einstein, string and dual frame.

The solution for Dp-brane in the string frame is given by

ds2
string = H−1/2d~x2

(p+1) +H1/2
(
dr2 + r2dΩ2

(8−p)
)
, (A.1)

eφ = gsH
−(p−3)/4, (A.2)

F0···pr = ∂rH
−1, (A.3)
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where H = 1 + ḡ2
YMNα

′−2(α
′
r )(7−p) and relation between Yang-Mills coupling and string

coupling is given by g2
YM := gs(α

′)(p−3)/2. We are interested in the near-horizon limit by

rescaling r → α′r as α′ → 0.7 At this limit,

ds2 = α′
(
r(7−p)/2

ḡYM
√
N
d~x2

(p+1) +
ḡYM
√
N

r(7−p)/2 dr
2 + ḡYM

√
Nr(p−3)/2dΩ2

8−p

)

eφ = ḡ2
YM

(
ḡ2
YMN

r7−p

)(3−p)/4
. (A.4)

For simplicity, most of time we will simply put H → rp−7 by absorbing those prefactors

but recover them whenever necessary. The ansatz becomes

ds2
string = r−(p−7)/2d~x2

(p+1) + r(p−7)/2
(
dr2 + r2dΩ2

(8−p)
)
, (A.5)

eφ = r−(p−3)(p−7)/4, (A.6)

F0···pr = (7− p)r−(p−6), (A.7)

Sometimes it is convenient to work on the Einstein frame and dual frame, which

are obtained from weyl transformation such that geinstein = e−φ/2gstring and gdual =

e2φ/(p−7)gstring. Their corresponding metric become

ds2
einstein = r(p−7)2/8d~x2

(p+1) + r(p−7)(p+1)/8
(
dr2 + r2dΩ2

(8−p)
)

(A.8)

and

ds2
dual = r−(p−5)d~x2

(p+1) + r−2dr2 + dΩ2
(8−p) (A.9)

The advantage of dual frame is that one can do another transformation u2 = R2r(5−p) to

bring it to a AdS-like coordinate such that

ds2
AdS =

u2

R2
d~x2

(p+1) +R2du
2

u2
+ dΩ2

(8−p), R = 2/(5 − p) (A.10)

This near-horizon geometry is a domain-wall solution and is argued to break 1/2 of maximal

supersymmetries and the quantum field theory living on its boundary is discussed in [12].

In order to study the holographic RG flow for our new null-like domain wall solu-

tions, we need the dimensionally reduced action for the following (p+ 2)-dimensional field

configurations (in the dual frame)

ds2 = d~y2
(p+2) + dΩ2

(8−p) (A.11)

φ = φ(~y) (A.12)

F 2
(p+2) = −(p+ 2)!e2γφ (A.13)

and the resulting reduced action is

SDR =

∫
dp+2y

√−geγφ
[
R+

4(p− 1)(p − 4)

(p− 7)2
(∂φ)2 +

1

2
e(a− (p−7)γ

4
)φ

]
(A.14)

7Be aware that we have omit all numerical factors in H for its no relevance to our purpose. After

recaling, r has the dimension of mass instead of length.
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where γ = 2(p − 3)/(7 − p). Note that we fix the 10-dimensional form flux and the

(8− p)-sphere part in the metric in (null-like) domain wall solutions, but vary the (p+ 2)-

dimensional metric and dilaton. In this way, the reduced action governs the dynamics for

φ and ds2
(p+2).

Finally, we transform the action (A.14) to the one in Einstein frame, the result is

SE =

∫
dp+2y

√−g
[
R+

4(p− 9)

p(p− 7)2
(∂φ)2 +

1

2
e−

2
p
γφ
]
. (A.15)

The field equations derived from it can be solved by

ds2
(p+2) = e

2
p
γφ [

r5−pa(u)2(−2dudv + h(u, r, ~x)du2 + d~x2
p−1) + r−2dr2

]
(A.16)

eφ = r(3−p)(p−7)/4a(u)(p+1)(p−7)/(2(p−3)) (A.17)

with the functions a and h given in section 3. Note that the overall Weyl factor in the

metric is induced by the transformation from dual frame to Einstein one.

B. Spin connections for null-like dilatonic domain-wall solutions

Since the Killing spinor equations for type II supergravity are given in string frame [15], we

will translate the metric ansatz (1.1) into string frame and use the constraint (2.6), that is

ds2
string = r2αa2β(−2dudv + hdu2 + d~x2

(p−1)) + r−2αa2δ(dr2 + r2dΩ2
(8−p)) (B.1)

where α = 7−p
4 , β = p−7

2(p−3) , δ = − p+1
2(p−3) .

It is convenient to choose a vielbein basis

e+ = rαaβdu

e− = rαaβ
(
−dv +

1

2
hdu

)

ei = rαaβdxi,

er = r−αaδdr,

em = r−αaδdΩm, (B.2)

and work out the spin connections

ω+
r = αrα−1a−δe+,

ω−r = αrα−1a−δe− +
1

2
rαa−δ∂rhe

+,

ω−+ = 2βr−αa−β−1∂uae
−,

ω−i =
1

2
∂ihr

−αa−βe+,

ωir = αrα−1a−δei, ωi+ = 2βr−αa−β−1∂uae
i,

ωr+ = 2δr−αa−β−1∂uae
r,

ωmr = (−α+ 1)rα−1a−δem, ωm+ = 2δr−αa−β−1∂uae
m (B.3)
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as well as the gamma matrices in vielbein basis,

γ̄+ = rαaβγu, γ̄− = −rαaβγv +
1

2
hrαaβγu,

γ̄r = r−αaδγr, γ̄i = rαaβγi, γ̄m = r−αaδγΩm

(B.4)

C. AdS5 × S5 in the null-like axi-dilaton background

For completeness, we reproduce the solutions found in [24], where near-horizon geometry

is AdS5 × S5 with null-like axi-dilaton background. Starting with the ansatz

ds2 = e2ρa(u)2
(
−2dudv + hdu2 + d~x2

(2)

)
+ dρ2 + dΩ2

(5)

eφ = eφ(u),

F(5) = 4
(
e4ρa(u)4du ∧ dv ∧ · · · ∧ dρ+ ω(5)

)
. (C.1)

Here ω(5) is the volume form of 5-sphere. Notice that the five-form field strength is self-dual

such that F 2
(5) = 0.

The dilaton field is decoupled at p = 3 (σ = 0), thus equation of motion becomes

RMN =
1

2
∂Mφ∂Nφ+

1

2
e2φ∂Mχ∂Nχ+

1

48

(
FMK1···K4F

K1···K4
N − 1

10
gMNF

2
(5)

)
, (C.2)

∇M (FMN1···N4) = 0, (C.3)

∇M∇Mφ = e2φ∂M∂Mχ, ∇M (e2φ∇Mχ) = 0, (C.4)

where we have included the axion field as well.

Ricci tensors are calculated,

Ruu = 2((∂u ln a)2 − ∂2
u ln a)− 1

2
~∇2h− e2ρa2

(
4h+ 2∂ρh+

1

2
∂2
ρh

)
(C.5)

Ruv = 4e2ρa2 (C.6)

Rij = −4e2ρa2δij (C.7)

Rρρ = −2 (C.8)

Rmn = 4g(5−sphere)
mn (C.9)

where g
(5−sphere)
mn is the metric for unit 5-sphere.

Equation (C.4) is automatically satisfied due to guu = 0. Then only the uu-component

of equation of motion gives the nontrivial constraint,

2((∂u lna)2 − ∂2
u ln a)− 1

2
~∇2h− e2ρa2

(
2∂ρh+

1

2
∂2
ρh

)
=

1

2
∂uφ∂uφ+

1

2
e2φ∂uχ∂uχ. (C.10)

Although our ansatz starts with vanishing axion field, it is straightforward to generate

a class of solutions with both u-dependent axi-dilaton switched on via the well-known
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S-duality transformation:

τ → aτ + b

cτ + d
, Hα → (ΛT )−1α

βH
β,

τ = χ+ ie−φ, Λ =

(
a b

c d

)
∈ SL(2, R), Hα =

(
HNSNS

(3)

HRR
(3)

)
, (C.11)

here the transformation of three-form flux is redundant for vanishing H(3).

D. AdS3 × S3 ×M4 in the null-like axi-dilaton background

For completeness, we also give time dependent solution for the AdS3 × S3 ×M4 vaccum.

The relevant equations of motion are

RMN =
1

2
∂Mφ∂Nφ+

1

2
e2φ∂Mχ∂Nχ+

1

4
e−φHMPQHN

PQ +
1

4
eφH̃MPQH̃N

PQ, (D.1)

∇M∇Mφ+ e2φ∂M∂Mχ+
1

12
(e−φH2 − eφH̃2) = 0, (D.2)

∇M(
√−ge−φHMNP ) = ∇M (

√−geφχH̃MNP ), ∇M (
√−geφH̃MNP ) = 0, (D.3)

∇M(e2φ∇Mχ) +
1

6
H̃MNPH

MNP = 0, (D.4)

where H(3) ≡ HNSNS and H̃(3) ≡ HRR − χHNSNS . They can be solved by following

ansatz:

ds2 = e2ρa(u)2(−2dudv + h(u, ρ)du2) + dρ2 + dΩ2
3 + d~x2

i ,

H = 2(e2ρa(u)2du ∧ dv ∧ dρ+ ω(3)),

H̃ = 0,

χ = χ(u), (D.5)

where xi’s are coordinates four dimensional flat space. Since H is self-dual in the six di-

mensions AdS3×S3, (D.2) is satisfied. Then the non-vanishing Ricci tensors are calculated:

Ruu = −1

2
e2ρa2(4h+ 2∂ρh+ ∂2

ρh), (D.6)

Ruv = 2e2ρa2 (D.7)

Rρρ = −2, (D.8)

Rmn = 2g(3−sphere)
mn . (D.9)

The uu-component again gives the nontrivial constraint:

−e2ρa2(2∂ρh+ ∂2
ρh) = e2φ∂uχ∂uχ+ ∂uφ∂uφ, (D.10)

Since the RHS only allows u-dependence, this is solved by

∂2
ρh+ 2∂ρh = P (u)e−2ρ, (D.11)

provided arbitrary profile P (u). Again, even though we start with ansatz of vanishing

scalar, it is easy to construct a class of solution with both axi-dilaton turned on via the

transformation given by (C.11).
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